Орбиты движения искусственных спутников земли. Геостационарная орбита

Краткое описание

Искусственный спутник Земли (ИСЗ) - космический аппарат, вращающийся вокруг Земли по геоцентрической орбите.
Для движения по орбите вокруг Земли аппарат должен иметь начальную скорость, равную или немного большую первой космической скорости.

Введение …………………………………………………………………………...2
1 Классификации типов ИСЗ…………………………………………………......2
1.1. Спутник связи……………………………………………………………….…2
2.1Орбиты искусственных спутников Земли…………………………………...3
2.2 Деление орбит ИСЗ………………………………………………………….….6
2.2.1 Классификация орбит ИСЗ по наклонению……………………….……...6
2.2.1.1 Экваториальные орбиты…………………………………………………..7
2.2.1.2 Полярные орбиты…………………………………………………………..7
2.2.1.3 Солнечно-синхронные орбиты…………………………………………….8
2.2.2 Классификация орбит ИСЗ по величине большой полуоси………….….9
2.2.2.1 Низкоорбитальные ИСЗ (LEO)……………………………………………9
2.2.2.2 Среднеорбитальные ИСЗ(MEO)…………………………………………..9
2.2.2.3 Геостационарные и геосинхронные орбиты ИСЗ……………………....9
2.2.2.4 Высокоорбитальные ИСЗ (HEO)…………………………………………12
3 Заключение………………………………………………………………………..13
Список литературы………………………………………………………………...14

Файлы: 1 файл

Принцип действий одноразовой многоступенчатой ракеты-носителя состоит в следующем: пока работает первая ступень, можно рассматривать остальные вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После ее отделения начинает работать вторая, которая вместе с последующими ступенями и истинной полезной нагрузкой образует новую самостоятельную ракету. Для второй ступени все последующие (если они есть) вместе с истинным полезным грузом играют роль полезной нагрузки и так далее, т. е. полет ее характеризуется несколькими этапами, каждый из которых является как бы ступенью для сообщения начальной скорости другим одноступенчатым ракетам, входящим в ее состав. При этом начальная скорость каждой последующей одноступенчатой ракеты равна конечной скорости предыдущей. Отторжение первой и последующих ступеней носителя осуществляется после полного выгорания топлива в двигательной установке.

Путь, который проходит ракета-носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета - это пролет ступеней носителя с работающими двигателями, пассивный участок - полет отработавших ракетных блоков после их отделения от ракеты-носителя.

Носитель, стартуя вертикально (Рис. 1.участок 1, расположенный на высоте 185... 250 км), выходит затем на криволинейный активный участок 2 в восточном направлении. На этом участке первая ступень обеспечивает постепенное уменьшение угла наклона ее оси по отношению к местному горизонту. Участки 3, 4 - соответственно активные участки полета второй и третьей ступеней, 5 - орбита ИСЗ, 6, 7 - пассивные участки полета ракетных блоков первой и второй ступеней

При выведении ИСЗ на соответствующую орбиту большую роль играют время и место запуска ракеты-носителя. Подсчитано, что космодром выгоднее располагать как можно ближе к экватору, так как при разгоне в восточном направлении ракета-носитель получает дополнительную скорость. Эта скорость называется окружной скоростью космодрома Vк, т. е. скорость его движения вокруг оси Земли благодаря суточному вращению планеты, т. е. на экваторе она равна 465 м/с, а на широте космодрома Байконур

316 м/с. Практически это означает, что с экватора той же ракетой-носителем может быть запушен более тяжелый ИСЗ. Завершающей стадией полета ракеты-носителя является вывод ИСЗ на орбиту, форма которой определяется кинетической энергией, сообщаемой ИСЗ ракетой, т. е. конечной скоростью носителя. В том случае, когда спутнику сообщается количество энергии, достаточное для его вывода на ГСО, ракета-носитель должна вывести в точку, удаленную от Земли на 35 875 км, и сообщить ему при этом скорость 3075 м/с.

Орбитальную скорость геостационарного ИСЗ легко подсчитать. Высота ГСО над поверхностью Земли 35 786 км, радиус ГСО на 6366 км больше (средний радиус Земли), т. е. 42 241 км. Умножив значение радиуса ГСО на 2л (6,28), получим ее длину окружности - 265 409 км. Если разделить ее на длительность суток в секундах (86 400 с), получим орбитальную скорость ИСЗ - в среднем 3,075 км/с, или 3075 м/с.

Обычно вывод спутника ракетой-носителем осуществляется в четыре этапа: выход на начальную орбиту; выход на орбиту «ожидания» (парковочную орбиту); выход на переходную орбиту; выход на конечную орбиту.

2.2Деление орбит ИСЗ.

Основное деление орбит производят по величине наклонения "i" орбиты и по значению большой полуоси "a". Кроме того, можно выделить деление по величине эксцентриситета "e" - малоэллиптичные и высокоэллиптичные орбиты. Наглядное представление об изменении вида орбиты при различных значениях эксцентриситета дано на рис. 2.

Рис. 2. Изменение вида эллиптической орбиты при разных значениях эксцентриситета "e".

Классификация орбит ИСЗ по наклонению

В общем случае наклонение орбита ИСЗ лежит в диапазоне 0° < "i" < 90° (рис. 3). В зависимости от значение наклонения и высоты ИСЗ над поверхностью Земли, положение областей его видимости имеют различные границы широты, а в зависимости от высоты над поверхностью - и различный радиус этих областей. Чем больше наклонение, тем на более северных широтах может быть виден спутник, а чем он выше - тем шире область видимости. Таким образом, наклонение "i" и большая полуось "a" определяют перемешение по поверхности Земли полосы видимости ИСЗ и её ширину.

В общем случае пареметры орбиты будут эволюционировать в зависимости от наклонения "i", большой полуоси "a" и эксцентриситета "e".

Рис. 3. Общий случай орбиты спутника с наклонением 0° < "i" < 90°.

Экваториальные орбиты

Экваториальная орбита - крайний случай орбиты, когда наклонение "i" = 0° (рис. 4). В этом случае прецессия и поворот орбиты будут максимальны - до 10°/сутки и до 20°/сутки соответственно. Ширина полосы видимости спутника, которая расположена вдоль экватора, определяется его высотой над поверхностью Земли. Орбиты с малым наклонением "i" часто называют "около экваториальными".

Рис. 4. Экваториальная орбита.

Полярные орбиты

Полярная орбита - второй крайний случай орбиты, когда наклонение "i" = 90° (рис. 5). В этом случае прецессия орбиты отсутствует, а поворот орбиты происходит в сторону, обратную относительно вращения ИСЗ, и не превышает 5°/сутки. Подобный полярный ИСЗ последовательно проходит над всеми участками поверхности Земли. Ширина полосы видимости спутника определяется его высотой над поверхностью Земли, но спутник рано или поздно можно увидеть из любой точки. Орбиты с наклонением "i", близким к 90°, называют "приполярными".

Рис. 5. Полярная орбита.

Солнечно-синхронные орбиты

Рис. 6. Солнечно-синхронная орбита.

Солнечно-синхронная орбита (ССО) - особый вид орбиты, часто используемый спутникам, которые производят съёмку поверхности Земли. Представляет собой орбиту с такими параметрами, что спутник проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время. Движение такого спутника синхронизировано с движением линии терминатора по поверхности Земли - за счёт этого спутник может лететь всегда над границей освещённой и неосвещённой солнцем территории, или всегда в освещённой области, или наоборот - всегда в ночной, причём условия освещённости при пролёте над одной и той же точкой Земли всегда одинаковые. Для достижения этого эффекта орбита должна прецессировать в сторону, обратную вращения Земли (т.е. на восток) на 360° в год, чтобы компенсировать вращение Земли вокруг Солнца. Такие условия соблюдаются только для определённого диапазона высот орбит и наклонений - как правило, это высоты 600-800 км и наклонение "i" должно быть порядка 98°, т.е. ИСЗ на солнечно-синхронных орбитах имеют обратное движение (рис. 6). При увеличении высоты полёта ИСЗ наклонение должно увеличиваться, из-за чего он не будет пролетать над полярными районами. Как правило, солнечно-синхронные орбиты близки к круговым, но могут быть и заметно эллиптичными. Из-за влияния возмущений спутник постепенно выходит из режима синхронизации, в связи с чем он периодически нуждается в коррекции своей орбиты при помощи двигателей.

Классификация орбит ИСЗ по величине большой полуоси

Вторая классификация - по величине большой полуоси, и точнее, по высоте над поверхностью Земли.

Низкоорбитальные ИСЗ (LEO)

Низкоорбитальными ИСЗ (НОС (рус.), рис. 7, а) обычно считаются спутники с высотами от 160 км до 2000 км над поверхностью Земли. Такие орбиты (и спутники) в англоязычной литературе называют LEO (от англ. "Low Earth Orbit"). Орбиты LEO подвержены максимальным возмущениям со стороны гравитационного поля Земли и её верхней атмосферы. Угловая скорость спутников LEO максимальна - от 0,2°/с до 2,8°/с, периоды обращения от 87,6 минут до 127 минут.

Рис. 7. Низкоорбитальные ИСЗ (а) и среднеорбитальные ИСЗ (б).

Среднеорбитальные ИСЗ(MEO)

Среднеорбитальными ИСЗ (СОС (рус.), или "MEO" - от англ. "Medium Earth Orbit") обычно считаются спутники с высотами от 2000 км до 35786 км над поверхностью Земли (рис. 7, б). Нижний предел определяется границей LEO, а верхний - орбитой геостационарных спутников. Эту зону в основном "заселяют" спутники навигации (ИСЗ "NAVSTAR" системы "GPS" летают на высоте 20200 км., ИСЗ системы "ГЛОНАСС" - на высоте 19100 км.) и связи, которые покрывают полюса Земли. Период обращения - от 127 минут до 24 часов. Угловая скорость - единицы и доли угловой минуты в секунду.

Геостационарные и геосинхронные орбиты ИСЗ

Геостационарные ИСЗ (ГСС (рус.), или "GSO" - от англ. "Geosynchronous Orbit") считаются спутники, имеющие период обращение вокруг Земли, равный звёздным (сидерическим) суткам - 23ч 56м 4,09с. Если наклонение "i" орбиты нулевое, то такие орбиты называют геостационарными (рис. 8, а). Геостационарные ИСЗ летают на высоте 35786 км над поверхностью Земли. Т.к. их период обращение совпадает с периодом обращения Земли вокруг своей оси, то такие ИСЗ "висят" в небе на одном месте (рис. 9). Если наклонение "i" не равно нулю, то такие ИСЗ называются геосинхронными (рис. 8, б). В реальности многие геостационарные спутники имеют небольшое наклонение и подвержены возмущениям со стороны Луны и Солнца, в связи с чем они описывают на небе фигуры в виде "восьмёрок", вытянутых в направлении север-юг.

Рис. 8. Геостационарный (а) и геосинхронный (б) ИСЗ.

Если говорить о виде траектории ГСС, то он определяется значением наклонения наклонения "i", эксцентриситета "e" и аргумента перигея "Wp орбиты спутника (рис. 10). Если эксцентриситет и наклонение орбиты нулевые, то подспутниковая точка неподвижна и проецируется в конкретную точку поверхности Земли. При ненулевом эксцентриситете и нулевом наклонени ГСС "рисует" на поверхности отрезок, перемещаясь с востока на запад и обратно, смещаясь от нулевого положения не более чем на ΔLmax = 114.6°·e, т.е. при эксцентриситете e=0.01 смещение будет не более чем на 1.2°. Если наклонение ненулевое, а эксцентриситет нулевой, то ГСС "рисует" классические "восьмёрки" -- угловая высота 2Θ фигуры равна удвоенному значению наклонения i орбиты, максимальная ширина ΔLmax вычисляется по формуле 0.044·i2 (наклонение "i" задаётся в градусной мере). В самом общем случае при ненулевых "i" и "e" трек ГСС на поверхности Земли представляет собой "наклонённую восьмёрку", угловая высота 2Θ = i, максимальная ширина ΔLmax = 114.6°·e, причём "восьмёрка" получается только в том случае, если аргумент перигея "Wp" орбиты равен 0° и 180°, в остальных случаях получается более сложная фигура что-то среднее между овалом и "восьмёркой".

Рис. 10. Виды треков ГСС на поверхности Земли в зависимости от наклонения "i", эксцентриситета "e" и аргумента перигея "Wp" орбиты.

Геостационарная орбита ограничена в размерах и лежит в плоскости экватора Земли. Её радиус составляет 42164 км от центра Земли. Небесные координаты геостационарного спутника на геостационарной орбите теоретически будут постоянными. Основными причинами, искажающими кеплеровское движение пассивного геостационарного спутника, являются гравитационные возмущения (несферичность геопотенциала, лунно-солнечные возмущения), а для ГСС с большим отношением площади поверхности к массе еще и негравитационный (световое давление) фактор. В результате действия возмущающих сил появляется дрейф спутника, изменяющий период вращения вокруг Земли. Отличие периода вращения ГСС от теоретического приводит к тому, что средняя долгота ГСС меняется со временем: спутник медленно дрейфует с запада на восток, если его период обращения вокруг Земли меньше звездных суток, и с востока на запад в противном случае. Отличие эксцентриситета "e" от нуля также приводит к тому, что подспутниковая долгота ГСС меняется. Происходит незначительное изменение долготы (с периодом около 12ч и амплитудой, пропорциональной квадрату угла наклонения орбиты), и широты (с периодом 24ч и амплитудой, равной самому наклонению "i"). Вследствие этого подспутниковая точка описывает на поверхности Земли известную "восьмерку".

Геостационарная орбита вокруг Земли одна. Запуски спутников на ГСО начались с 1963 года. На начало 21 века более 40 стран планеты имеют свои геостационарные спутники. Ежегодно на ГСО запускается десятки спутников, орбита к тому же постепенно заполняется отработавшими спутниками. На ГСО постоянно происходят взрывы

отработанных аппаратов и их ракет-носителей. Эти взрывы порождают десятки-сотни космических осколков, которые могут вывести из строя работающие аппараты. Засорение космическим мусором этой орбиты может привести к необратимым последствиям -- невозможности стабильного функционирования спутников. Космический мусор на ГСО, в отличие от близких околоземных орбит, может вращаться вокруг Земли тысячелетиями, угрожая столкновением с работающими КА. С конца 20 века проблема загрязнения ГСО стала общепланетарной, масштабной экологической проблемой.

Согласно международной конвенции по мирному использованию космического пространства при ООН, и требованиям международного радиочастного комитета (во избежании радиопомех на соседние ГСС), угловое расстояние между ГСС не должно быть менее 0.5°. Таким образом, теоретически количество ГСС, находящихся на безопасном расстоянии на ГСО, должно быть не более 720 штук. В последнее десятилетие это расстояние между ГСС не выдерживается. На 2011 год количество каталогизированных ГСС уже превысило более 1500. Сюда можно добавить более 600 высокоэллиптических объектов, периодически пересекающих ГСО и более 200 военных спутников, запущенных на ГСО в интересах Министерства обороны и разведки разных стран, которые не содержатся в публично доступном каталоге объединенного командования СПРН США и Канады (NORAD).

К геостационарным спутникам принято относить спутники с периодами от 22ч до 26ч, эксцентриситетами "e" не более 0.3 и наклонами плоскости орбиты к плоскости экватора "i" до 15°, но в некоторых источниках можно встретить и более подробную классификацию, и более жесткие границы.

Высокоорбитальные ИСЗ (HEO)

Высокоорбитальными ИСЗ (ВОС (рус.), или "HEO" - от англ. "High Earth Orbit") считаются спутники, достигающие высот более 35786 км над поверхностью Земли , т.е. залетающие выше геостационарных спутников (см. рис. 10). Орбиты могут иметь значительный эксцентриситет (например, спутники серии "Меридиан", "Молния") - в этом случае они называются высокоэллиптичными (ВЭС), так и быть почти круговыми (пример - ИСЗ "Vela" (те самые ИСЗ, на которых в конце 60-х гг. ХХ в. были открыты гамма-всплески)).

Рис. 13. Орбита ВЭС.

В космических системах, решающих задачи персональной связи, используются спутники, которые могут находиться на различных орбитах.

Орбиты космических аппаратов (КА) классифицируются: по форме, периодичности прохождения над точками земной поверхности и по наклонению.

По форме различают следующие типы орбит:

1. Круговые - трудно реализуемые на практике и требующие частой коррекции помощью бортовых корректирующих двигателей КА.

2. Близкие к круговым. Это наиболее распространенный тип орбит в системах спутниковой связи. На таких орбитах высоты апогея и перигея. различаются на несколько десятков километров.

3. Эллиптические. Высоты Н (апогея) и Н (перигея) могут значительно различаться (например, Н а = 38000-40000 км , Н п = 400-500 км ), Данные орбиты также широко применяются в системах спутниковой связи.

4. Геостационарные. Это круговые экваториальные орбиты с периодом обращения спутника, равным периоду обращения Земли (Р = 23 ч 56 мин ). На такой орбите спутник располагается на высоте 36000 км и находится постоянно над определенной точкой экватора Земли. Космические аппараты, находящиеся на геостационарной орбите, имеют большую площадь обзора Земли, что позволяет с успехом использовать их в системах спутниковой связи.

5. Параболические и гиперболические. Применяются, как правило, при изучении планет Солнечной системы.

По периодичности прохождения КА над точками земной поверхности различают следующие типы орбит:

1. Синхронные. Они, в свою очередь, подразделяются на синхронные изомаршрутные и синхронные квазимаршрутные. Изомаршрутные орбиты характеризуются тем, что проекции орбиты искусственных спутников Земли (ИСЗ) на земную поверхность (трассы) совпадают ежесуточно. Квазимаршрутные орбиты характеризуются тем, что проекции орбиты на земную поверхность совпадают один раз в несколько суток.

2. Несинхронные характеризуются тем, что трассы, соответствующие любым двум оборотам КА вокруг Земли, не совпадают.

Под наклонением орбиты понимается угол между плоскостями экватора Земли и орбиты КА. Наклонение отсчитывается от плоскости экватора до плоскости орбиты против часовой стрелки. Оно может изменяться от 0 до 180°.

По наклонению различают следующие типы орбит:

· Прямые (наклонение орбиты < 90°)

· Обратные (наклонение орбиты > 90°)

· Полярные (наклонение орбиты = 90°)

· Экваториальные (наклонение орбиты равно 0 или 180°)

Прецессия орбиты

Не сферичность Земли и неравномерность распределения ее массы приводят к изменению (прецессии) плоскости орбиты КА что влечет за собой прецессию линии апсид (т.е. линии соединяющей апогей и перигей) орбиты. При этом скорость названных прецессий зависит от формы орбиты, высоты апогея и перигея, а также от наклонения. Прецессия плоскости орбиты приводит к смещению восходящего и нисходящего углов относительно первоначального положения (в момент вывода КА на орбиту).

Величина прецессии плоскости орбиты космического аппарата зависит от напряженности гравитационного поля Земли. Увеличение напряженности приводит к «спрямлению» орбиты вблизи экватора за счет увеличения скорости движения ИСЗ в направлении экватора. При этом спутник движущийся по прямой орбите начинает отклоняться влево по ходу движения, а движущийся по обратной орбите - наоборот, вправо по ходу движения.

Таким образом, в первом случае плоскость орбиты прецессирует в западном направлении, а во втором - в восточном. Плоскости полярных орбит (имеющих наклонение = 90°) не прецессируют.

Высота орбит связных ИСЗ

В настоящее время в космических системах для решения задач персональной радиосвязи применяют спутники, которые могут находиться на следующих орбитах: низких (круговых или близких к круговым), средневысотных (круговых или эллиптических) и геостационарных.

Высота орбит КА выбирается на основании анализа многих факторов, включая энергетические характеристики радиолиний задержку при распространении радиоволн, близость к орбите радиационных поясов Ван Аллена, размеры и расположение обслуживаемых территорий. Кроме того на высоту орбиты влияют способ организации связи и требования по обеспечению необходимого значения угла места КА.

Анализируя низкоорбитальные группировки различных космических систем, можно заметить, что высоты круговых орбит КА большинства из этих группировок находятся в диапазоне от 700 до 1500 км. Это обусловлено следующими факторами:

· На орбитах, расположенных ниже 700 км , плотность атмосферы достаточно высока что вызывает уменьшение эксцентриситета и постепенное снижение высоты апогея. Дальнейшее уменьшение высоты орбиты приводит к повышенному расходу топлива увеличению частоты маневров для поддержания заданной орбиты.

· На высотах выше 1500 км располагается первый радиационный пояс Ван Аллена, в котором невозможна работа электронной бортовой аппаратуры.

Средневысотные орбиты (5000 - 15000 км над поверхностью Земли) находятся между первым и вторым радиационными поясами Ван Аллена. В системах, использующих КА, расположенные на таких орбитах, задержка распространения сигналов через спутник-ретранслятор составляет примерно 130 мс , что практически неуловимо для человеческого слуха и, следовательно, позволяет использовать такие спутники для радиотелефонной связи.

Системы, использующие спутники с высотой орбиты 700 - 1500 км , имеют лучшие энергетические характеристики радиолиний, чем системы с высотой орбит спутников, равной примерно 10000 км , но уступают им в продолжительности активного существования КА. Дело в том, что при периоде обращения КА около 100 мин (для низких орбит) в среднем 30 мин из них приходится на теневую сторону Земли. Поэтому бортовые аккумуляторные батареи испытывают от солнечных батарей приблизительно 5000 циклов заряда / разряда в год. Для круговых орбит с высотой 10000 км период обращения составляет около 6 ч , из которых лишь несколько минут КА проводит в тени Земли.

Следует также отметить, что спутник, находящийся на низкой орбите, попадает в зону прямой видимости абонента лишь на 8-12 мин . Значит, для обеспечения непрерывной связи любого абонента потребуется много КА, которые последовательно (при помощи шлюзовых станций или межспутниковой связи) должны обеспечивать непрерывную связь. С увеличением высоты орбиты КА зона прямой видимости спутника-ретранслятора и абонента увеличивается, что приводит к уменьшению количества спутников, необходимого для обеспечения непрерывной связи. Таким образом, с увеличением высоты орбиты увеличиваются время и размеры зоны обслуживания и, следовательно, требуется меньшее число спутников для охвата одной и той же территории.

Геостационарные космические системы с высотой орбит спутников примерно 36000 км обладают двумя важными преимуществами:

· Система, состоящая из трех геостационарных спутников, практически обеспечивает глобальный обзор земной поверхности.

· Спутники всегда находятся над определенной точкой Земли, что позволяет сэкономить на оборудовании слежения за КА.

Для нашей системы связи актуальнее использовать спутник на геостационарной орбите, что позволит охватить нужную площадь земной поверхности и избавиться от использования сложной аппаратуры слежения за ИСЗ.

Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).

При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается. В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея - точку, соответствующую наибольшему значению r = ra (рис. 3.2).

Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли

где R - радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а - а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора - наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°90°

Орбита спутника характеризуется также долготой апогея д - долгота подспутниковой точки (точка пересечения радиуса-вектора с поверхностью Земли) в момент прохождения спутником апогея и периодом обращения Т (время между двумя последовательными прохождениями одной и той же точки орбиты).

Для систем связи и вещания необходимо, чтобы имелась прямая видимость между спутником и соответствующими земными станциями в течение сеанса связи достаточной длительности. Если сеанс не круглосуточный, то удобно, чтобы он повторялся ежесуточно в одно и то же время. Поэтому предпочтительны синхронные орбиты с периодом обращения, равным или кратным времени оборота Земли вокруг оси, т. е. звездным суткам (23 ч 56 мин 4 с).

Широкое применение нашла высокая эллиптическая орбита с периодом обращения 12 ч, когда для систем связи и вешания использовались спутники «Молния» (высота перигея 500 км, апогея - 40 тыс. км). Движение ИСЗ на большой высоте - в области апогея - замедляется, а область перигея, расположенную над южным полушарием Земли, спутник проходит очень быстро. Зона видимости ИСЗ на орбите типа «Молния» в течение большей части витка вследствие значительной высоты велика. Она расположена в северном полушарии и поэтому удобна для северных стран. Обслуживание всей территории бывшего СССР одним из ИСЗ возможно в течение не менее 8 ч, поэтому трех ИСЗ, сменяющих друг друга, было достаточно для круглосуточной работы. В настоящее время ради исключения перерывов связи и вещания, упрощения систем наведения антенн земных станций на ИСЗ и других эксплуатационных преимуществ осуществлен переход на использование геостационарных орбит (ГСО) спутников Земли.



Орбита геостационарного ИСЗ - это круговая (эксцентриситет е = 0), экваториальная (наклонение i = 0°), синхронная орбита с периодом обращения 24 ч, с движением спутника в восточном направлении. Орбиту ГСО еще в 1945 г. рассчитал и предложил использовать для спутников связи английский инженер Артур Кларк, известный впоследствии как писатель-фантаст. В Англии и многих других странах геостационарную орбиту называют «Пояс Кларка»

Орбита имеет форму окружности, лежащей в плоскости земного экватора с высотой над поверхностью Земли 35 786 км. Направление вращения ИСЗ совпадает с направлением суточного вращения Земли. Поэтому для земного наблюдателя спутник кажется неподвижным в определенной точке небесной полусферы.

Геостационарная орбита уникальна тем, что ни при каком другом сочетании параметров нельзя добиться неподвижности свободно движущегося ИСЗ относительно земного наблюдателя. Необходимо отметить некоторые достоинства геостационарных ИСЗ. Связь осуществляется непрерывно, круглосуточно, без переходов (заходящего ИСЗ на другой); на антеннах земных станций упрощены, а на некоторых даже исключены системы автоматического сопровождения ИСЗ; механизм привода (перемещения) передающей и приемной антенн облегчен, упрошен, сделан более экономичным; достигнуто более стабильное значение ослабления сигнала на трассе Земля - Космос; зона видимости геостационарного ИСЗ около одной трети земной поверхности; трех геостационарных ИСЗ достаточно для создания глобальной системы связи; отсутствует (или становится весьма малым) частотный сдвиг, обусловленный эффектом Доплера.

Эффектом Доплера называют физическое явление, заключающееся в изменении частоты высокочастотных электромагнитных колебаний при взаимном перемещении передатчика и приемника. Эффект Доплера объясняется изме

нением расстояния во времени. Этот эффект может возникнуть также и при движении ИСЗ на орбите. На линиях связи через строго гестационарный спутник доплеровский сдвиг не возникает, на реальных геостационарных ИСЗ - мало существен, а на сильно вытянутых эллиптических или низких круговых орбитах может быть значительным. Эффект проявляется как нестабильность несущей частоты ретранслируемых спутником колебаний, которая добавляется к аппаратурной нестабильности частоты, возникающей в аппаратуре бортового ретранслятора и земной станции. Эта нестабильность может существенно осложнять прием сигналов, приводя к снижению помехоустойчивости приема.

К сожалению, эффект Доплера способствует изменению частоты модулирующих колебаний. Это сжатие (или расширение) спектра передаваемого сигнала невозможно контролировать аппаратурными методами, так что если сдвиг частоты превысит допустимые пределы (например, 2 Гц для некоторых типов аппаратуры частотного разделения каналов), то канал оказывается неприемлемым.

Существенное влияние на свойства каналов связи оказывает и запаздывание радиосигнала при его распространении по линии Земля - ИСЗ - Земля.

При передаче симплексных (однонаправленных) сообщений (программ телевидения, звукового вешания и других дискретных (прерывистых) сообщений это запаздывание не ощущается потребителем. Однако при дуплексной (двусторонней) связи запаздывание на несколько секунд уже заметно. Например, электромагнитная волна от Земли на ГСО и обратно «путешествует» 2...4 с (с учетом задержки сигнала в аппаратуре ИСЗ) и наземной аппаратуре. В этом случае не имеет смысла передавать сигналы точного времени.

Вывод геостационарного спутника на орбиту обычно осуществляется многоступенчатой ракетой через промежуточную орбиту. Современная ракета-носитель представляет собой сложный космический летательный аппарат, который приводится в движение реактивной силой ракетного двигателя.

В состав ракеты-носителя входят ракетный и головной блоки. Ракетный блок является автономной частью составной ракеты с топливным отсеком, двигательной установкой и элементами системы разделения ступеней. Головной блок включает в себя полезную нагрузку и обтекатель, защищающий конструкцию ИСЗ от силового и теплового воздействий набегающего потока воздуха при полете в атмосфере и служащего для монтажа на его внутренней поверхности элементов, которые участвуют в подготовке к пуску, но не функционируют в полете. Главный обтекатель позволяет облегчить конструкцию ИСЗ и является пассивным элементом, надобность в котором отпадает после выхода ракеты-носителя из плотных слоев атмосферы, где он сбрасывается. Полезная нагрузка космического аппарата состоит из ретрансляционного оборудования связи и вещания, радиотелеметрических систем, собственно корпуса ИСЗ со всеми вспомогательными и обеспечивающими системами.

Принцип действий одноразовой многоступенчатой ракеты-носителя состоит в следующем: пока работает первая ступень, можно рассматривать остальные вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После ее отделения начинает работать вторая, которая вместе с последующими ступенями и истинной полезной нагрузкой образует новую самостоятельную ракету. Для второй ступени все последующие (если они есть) вместе с истинным полезным грузом играют роль полезной нагрузки и так далее, т. е. полет ее характеризуется несколькими этапами, каждый из которых является как бы ступенью для сообщения начальной скорости другим одноступенчатым ракетам, входящим в ее состав. При этом начальная скорость каждой последующей одноступенчатой ракеты равна конечной скорости предыдущей. Отторжение первой и последующих ступеней носителя осуществляется после полного выгорания топлива в двигательной установке.

Путь, который проходит ракета-носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета - это пролет ступеней носителя с работающими двигателями, пассивный участок - полет отработавших ракетных блоков после их отделения от ракеты-носителя.

Носитель,стартуя вертикально (участок 1, расположенный на высоте 185... 250 км), выходит затем на криволиней ный активный участок 2 в восточном направлении. На этом участке первая ступень обеспечивает постепенное уменьшение угла наклона ее оси по отношению к местному горизонту. Участки 3, 4 - соответственно активные участки полета второй и третьей ступеней, 5 - орбита ИСЗ, 6, 7 - пассивные участки полета ракетных блоков первой и второй ступеней (рис. 3.4). При выведении ИСЗ на соответствующую орбиту большую роль играют время и место запуска ракеты-носителя. Подсчитано, что космодром выгоднее располагать как можно ближе к экватору, так как при разгоне в восточном направлении ракета-носитель получает дополнительную скорость. Эта скорость называется окружной скоростью космодрома Vк, т. е. скорость его движения вокруг оси Земли благодаря суточному вращению планеты.т. е. на экваторе она равна 465 м/с, а на широте космодрома Байконур - 316 м/с. Практически это означает, что с экватора той же ракетой-носителем может быть запушен более тяжелый ИСЗ.

Завершающей стадией полета ракеты-носителя является вывод ИСЗ на орбиту, форма которой определяется кинетической энергией, сообщаемой ИСЗ ракетой, т. е. конечной скоростью носителя. В том случае, когда спутнику сообщается количество энергии, достаточное для его вывода на ГСО, ракета-носитель должна вывести в точку, удаленную от Земли на 35 875 км, и сообщить ему при этом скорость 3075 м/с.

Орбитальную скорость геостационарного ИСЗ легко подсчитать. Высота ГСО над поверхностью Земли 35 786 км, радиус ГСО на 6366 км больше (средний радиус Земли), т. е. 42 241 км. Умножив значение радиуса ГСО на 2л (6,28), получим ее длину окружности - 265 409 км. Если разделить ее на длительность суток в секундах (86 400 с), получим орбитальную скорость ИСЗ - в среднем 3,075 км/с, или 3075 м/с.

Обычно вывод спутника ракетой-носителем осуществляется в четыре этапа: выход на начальную орбиту; выход на орбиту «ожидания» (парковочную орбиту); выход на переходную орбиту; выход на конечную орбиту (рис. 3.5). Цифрам соответствуют следующие этапы вывода спутника на ГСО: 1 - первоначальная переходная орбита; 2 - первое включение апогейного двигателя для выхода на промежуточную переходную орбиту; 3 - определение положения на орбите; 4 - второе включение апогейного двигателя для выхода на первоначальную орбиту дрейфа; 5 - переориентация плоскости орбиты и коррекция ошибок; 6 - ориентация перпендикулярно к плоскости орбиты и коррекция ошибок; 7 - остановка платформы спутника, раскрытие панелей, полная расстыковка с ракетой; 8 - раскрытие антенн, включение гиростабилизатора; 9 - стабилизация положения: ориентация антенн на нужную точку Земли, ориентация солнечных батарей на Солнце, включение бортового ретранслятора и установление номинального режима его работы.

В космическом пространстве над Землёй спутники движутся по определённым траекториям, называемые орбиты движения искусственных спутников Земли . Орбита – это траектория движения (или в переводе с латинского “путь, дорога”) какого-либо материального объекта (в нашем случае спутника) вперёд по заранее заданной системе пространственных координат с учётом конфигурации силовых полей, действующих на него.

Осуществляется движение искусственных спутников Земли (ИСЗ) по трём орбитам: полярной, наклонной и экваториальной (геостационарная).

Полярная орбита имеет угловой градус наклонения равный 90°(обозначается буквой "i" от англ. inclination) по отношению к плоскости экватора. Этот угол ещё измеряется в минутах и секундах. Полярная орбита бывает синхронной и квазисинхронной.

Наклонная же орбита расположена между полярной и экваториальной орбитами искусственных спутников Земли , образующая смещённый острый угол.

Главный и существенный недостаток полярной и наклонной орбиты в том, что спутник постоянно находится в движении по своей орбите, поэтому для отслеживания его положения антенну необходимо постоянно подстраивать для получения спутникового сигнала. Для автоматизированной подстройки антенны к положению спутника существуют специальные дорогостоящие оборудования, которые очень сложно установить и в дальнейшем обслуживать.

Геостационарная орбита (её ещё называю экваториальной) имеет нулевое отклонение и находится в плоскости экватора нашей планеты. Спутник, движущийся по ней совершает полный виток, равный тому времени, за которое Земля вращается вокруг своей оси. То есть по отношению к наземному наблюдателю такой спутник будет казаться неподвижным в одной точке.

1-Геостационарная орбита (ГСО) или экваториальная орбита.

2-Наклонная орбита.

3-Полярная орбита.

Высота над поверхностью Земли геостационарной орбиты (ГСО ) равна 35876 км, радиус 42241 км, а её протяжённость (длина) равна 265409 км. Необходимо учитывать эти параметры при выведения спутника на ГСО и тогда можно будет достичь такой неподвижности по отношению к наблюдателю, находящемся на Земле.

Именно геостационарную орбиту используют для запуска большинства спутников коммерческого назначения. Скорость движения спутника по ГСО примерно равна 3000 м/с.

Помимо сильных есть у геостационарной орбиты и слабая сторона: на приполярных районах Земли угол местности очень мал, поэтому передача сигнала становится невозможным – в связи с перенасыщением геостационарной орбиты, которое происходит из-за скопления нескольких спутников с небольшим расстоянием друг от друга.

Для спутникового телевидения используются спутники, находящиеся на ГСО , поэтому антенна пользователя неподвижна. Чем ближе широта к северу, тем меньше можно спутников принять.

Обычно спутниковая антенна настраивается по двум координатам: азимуту (отклонение самого спутника от направления в сторону “Север” и плоскостью горизонта, определяемая по часовой стрелке) и углу места (угол между плоскостью горизонта и направлением на спутник).

Геостационарная орбита с нулевым наклонением и высотой в 35756 км и по сегодняшний день остаётся стратегически важной орбитой для искусственных спутников Земли. Размещенные на этой орбите спутники обращаются вокруг центра Земли с той же угловой скоростью, как и земная поверхность. Благодарю этому, для спутниковых антенн отсутствует необходимость слежения за геостационарными спутниками - геостационарный спутник для определенного места поверхности Земли всегда расположен в одной точке неба.



Пример группировки российских геостационарных спутников связи в 2005 году:

Но проверка последнего графика с помощью сайта Гюнтера показывает, что в 2017 году было запущено не более 40 геостационарных спутников, даже если в это число включать запуски спутников на ГПО (геопереходную орбиту) и орбиты типа Молния (Космос-2518 ). В связи с этим разночтением я попытался самостоятельно оценить динамику ежегодных запусков на геостационарную орбиту и динамику изменения общей массы запускаемых геостационарных спутников с помощью того же сайта Гюнтера.

Большинство геостационарных спутников запускаются на геопереходные орбиты (ГПО) , и затем уже осуществляют с помощью собственных двигателей подъем перигелия и выход на геостационарную орбиту. Это вызвано стремлением минимизировать засорение стратегически важной геостационарной орбиты (разгонные блоки РН на ГПО сгорают гораздо быстрее, чем на ГСО из-за низкого перигелия орбит). В связи с этим чаще всего указывается стартовая масса геостационарных спутников при первоначальном выводе на ГПО. Поэтому я решил подсчитывать массу геостационарных спутников на ГПО, а так же включать в расчет спутники, которые были изначально предназначены для работы на ГПО или других эллиптических орбитах, находящихся между низкими и геостационарными орбитами (в основном это орбиты типа Молния). С другой стороны в некоторых случаях осуществляется прямой вывод спутников на геостационарную орбиту (к примеру, в случае советских, российских и американских военных спутников), кроме того для военных спутников масса часто просто неизвестна (в этом случае приходится указывать верхний предел возможностей РН при запусках на ГПО). В связи с этим расчеты являются лишь предварительными. На данный момент удалось обработать 35 годов из 60 лет космической эры, и имеет место следующая ситуация по годам:

1) По выводимой массе на ГПО и Молния орбиты в 2017 году действительно был установлен новый рекорд (192 тонны):

2) По количеству запускаемых аппаратов на эти типы орбит особого роста не наблюдается (черная линия - это линия тренда):

3) Похожая ситуация наблюдается и с количеством запусков:

В целом наблюдается тенденция стабильного увеличения грузопотока на высокоэллиптические высокие орбиты. Средние значения по десятилетиям:

По средней площади космических объектов (cumulative cross sectional area , измеряется в квадратных метрах) геостационарные спутники ещё больше превосходят низкоорбитальные аппараты (даже если учитывать разгонные блоки - RB ):

Вероятно, это связано с большим количеством разворачиваемых конструкций у геостационарных спутников (антенн, солнечных батарей и батарей терморегуляции).

С годами непрерывно растет и количество работающих спутников на геостационарной орбите. Только в нынешнем десятилетии их число выросло с четырех до пяти сотен:

Согласно базе данных действующих спутников в настоящее время старейшим действующим спутником на ГСО является спутник-ретранслятор TDRS-3 , запущенный в 1988 году. Всего сейчас на ГСО работают 40 аппаратов, чей возраст превысил 20 лет:

Общее число геостационарных спутников с учетом орбит захоронения уже превышает тысячу аппаратов (при минимальном количестве разгонных блоков (RB ) ракет на этих орбитах):

Примеры геостационарных группировок спутников:

Растущая переполненность геостационарной орбиты приводит к продолжению тенденции утяжеления геостационарных спутников. Если первые ГСО спутники весили всего 68 кг, то в 2017 году Китай попытался запустить 7.6-тонный аппарат . Очевидно, что растущая переполненность геостационарной орбиты приведет в будущем к созданию там крупных геостационарных платформ с элементами многоразового использования. Вероятно, подобные платформы будут решать сразу несколько задач: связь и наблюдение за поверхностью Земли для метеорологии, оборонных нужд и так далее.


Геостационарный спутник связи массой в 7.6 тонн, созданный на базе новой китайской платформы DFH-5

Похожие статьи

© 2024 knauf41.ru. Строительство, планирование, декор.